آشنایی با محیط وکا و ورود داده
آشنایی با محیط Explorer Weka
آشنایی با محیط Experimenter
آشنایی با محیط Knowledge Flow
کار با عملگرها
عملگرهای خواندن داده با انواع داده ای
اجرای تمام روش های دوره مفاهیم در وکا و کار با پارامترها به ترتیب مراحل فرآیند کریسپ نحوه اجرا و ذخیره
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
آماده سازی داده ها
شناخت داده ها( تعریف، انواع داده، انواع مجموعه داده)
پاکسازی داده( داده پرت و نویز، روش های تشخیص داده پرت، داده از دست رفته و .....)
مرحله پیش پردازش
جمع آوری داده(Integration)
تجمیع(aggregation)
نمونه برداری(sampling)
کاهش ابعاد
انتخاب ویژگی
گسسته سازی
تبدیل نوع داده ها
مدلسازی (رده بندی و خوشه بندی)
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
ارزیابی مدل ها( پارامترها، ماتریس درهم ریختگی، نمودار (ROC
رده بندی و پیش بینی( درخت تصمیم، شبکه عصبی، بیز ساده، نزدیکترین همسایه، بردار پشتیبان، به خاطرسپاری، رگرسیون، روشهای جمعی بگینگ و بوستینگ و ...روش های معمول در وکا همراه با مفاهیم
مدل های بدون راهنما: خوشه بندی سلسله مراتبی، الگوریتم K-Means
روش های ارزیابی خوشه بندی
مقایسه نمودار ROC
قواعدانجمنی
تعریف روش های موجود در وکا(apriori)،
مفاهیم پیشرفته
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
الگوریتم ژنتیک
Smote
الگوریتم ازدحام ذرات
شاخص جینی و سود اطلاعاتی
Relief
PCA
Wavelet
رده نامتوازن( روش های برخورد با حل مشکل رده نامتوازن)
مقایسه مدل ها با نمودار ROC
حل چند مثال مهم و پروژه عملی
معرفی چند نرم افزار کاربردی جهت داده کاوی
این درس از مجموعه دوره آشنایی با داده کاوی(Data Mining) و کاربردهای آن است
درس قبلی - کاربرد داده کاوی و یادگیری ماشین در پردازش متن(Text Processing)
درس بعدی - ویژگی(Feature) یا همان بُعد(Dimension) در داده کاوی چیست؟
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
بهتر است ابتدا درس داده کاوی چیست را مطالعه کرده باشید
مطالعه با تمرکز بیشتر
مدرس: مسعود کاویانی
MasoudKaviani.ir
با مطالعه دروس گذشته، یاد گرفته ایم که داده کاوی چیست. در این درس، میخواهیم چند نرم افزار کاربردی حوزه داده کاوی را مروری داشته باشیم. در میان نرم افزار های موجود، تمرکز را بر نرم افزارهایی گذاشتیم که نیاز به دانش برنامه نویسی ندارند. یعنی کسانی که به حوزه برنامه نویسی علاقه ندارند یا فعلا ترجیح میدهند از نرم افزارهای آماده(بدون طراحی نرم افزار و برنامه نویسی) استفاده کنند، میتوانند یادگیری این نرم افزارها را در دستور کار خود قرار دهند.
نرم افزار RapidMiner
این نرم افزار که که به گفته سازندگان آن تلاش بر این کرده است که به صورت یکپارچه عملیات مختلف حوزه علوم داده را تجمیع کند و به دانشمندان علوم داده اجازه دهد به سرعت مدل های مورد نیاز برای عملیات داده کاوی را شناسایی کنند.
نرم افزار Weka
نرم افزار وکا(weka) مجموعه ای از الگوریتم های مختلف جهت عملیات داده کاوی را در اختیار متخصصان و دانشمندان علوم داده می گذارد. کار با این نرم افزار بسیار ساده است و در اینجا کتابی جهت آموزش نرم افزار weka توسط خود سایت سازنده قرار داده شده است.
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
[sc name=”tbl_ea”]
نرم افزار Orange
یکی از نرم افزارهای بسیار ساده و لذت بخش جهت انواع عملیات داده کاوی است. این نرم افزار به خاطر سادگی و واسط کاربری ساده آن میتواند مورد استفاده بسیاری از متخصصان حوزه علوم داده باشد. حتی دوستانی که به تازگی به دنبال یادگیری علوم داده هستند، میتوانند از این نرم افزار استفاده کنند.
نرم افزار Neural Designer مخصوص طراحی شبکه های عصبی
اگر با شبکه های عصبی کار کرده باشید میدانید که طراحی این گونه شبکه ها معمولا کار وقت گیری است و نیاز به دقت بالایی دارد. با استفاده از نرم افزار Neural Designer به راحتی میتوانید شبکه های عصبی مخصوص خود را طراحی کنید و مدل های مختلف داده را توسط آن ها آزمایش کنید.
میتوانید نقاط قوت یا ضعف این درس را به ما بگویید و همچنین اگر سوالی در ذهن دارید از این قسمت(دیدگاهها) سوال خود را مطرح فرمایید
جهت اطلاع از دروس جدید و طرح سوالات و پرسش و پاسخ درباره این دوره و دوره های دیگر، میتوانید در شبکهها و صفحات اجتماعی ما عضو شوید
این درس از مجموعه دوره آشنایی با داده کاوی(Data Mining) و کاربردهای آن است
ترتیب پیشنهادی خواندن درسهای این مجموعه به صورت زیر است:
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
1 » داده کاوی(Data mining) چیست؟
2 » یادگیری ماشین(Machine Learning) چیست؟
3 » طبقه بندی(Classification) چیست؟
4 » خوشه بندی(Clustering) چیست؟
5 » سیستم توصیه گر(Recommendation System) چیست؟
6 » کاربرد داده کاوی و یادگیری ماشین در پردازش متن(Text Processing)
7 » معرفی چند نرم افزار کاربردی جهت داده کاوی
8 » ویژگی(Feature) یا همان بُعد(Dimension) در داده کاوی چیست؟
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
آمورش داده کاوی
داده کاوی مجموعه تکنیک هایی می باشد که پایگاه داده های بزرگ را به منظور دستیابی به دانش، تحلیل می کند. به منظور داده کاوی امروزه از روش های ماشینی و یا نیمه ماشینی استفاده می شود که دلیل آن هم تفاوت عمده در مقیاس، وسعت و گوناگونی زمینهها و کاربردها، و نیز ابعاد و اندازههای دادههایی می باشد که امروز مورد استفاده قرار می گیرد. داده کاوی یا Data Mining در اصل به معنای استخراج اطلاعات یا الگوهای عملکرد و روابط مشخص در میان داده ها و همینطور پایگاه های داده می باشد.
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
داده کاوی مجموعه تکنیک هایی می باشد که پایگاه داده های بزرگ را به منظور دستیابی به دانش، تحلیل می کند. به منظور داده کاوی امروزه از روش های ماشینی و یا نیمه ماشینی استفاده می شود که دلیل آن هم تفاوت عمده در مقیاس، وسعت و گوناگونی زمینهها و کاربردها، و نیز ابعاد و اندازههای دادههایی می باشد که امروز مورد استفاده قرار می گیرد. داده کاوی یا Data Mining در اصل به معنای استخراج اطلاعات یا الگوهای عملکرد و روابط مشخص در میان داده ها و همینطور پایگاه های داده می باشد.
داده کاوی بهرهگیری از ابزارهای تجزیه و تحلیل دادهها به منظور کشف الگوها و روابط معتبر گفته میشود که استفاده از این ابزارها منجر به یافتن سریع مدلهای آماری مورداستفاده درداده، مدلهای آماری و الگوریتمهای ریاضی میشود که این کار این به صورت خودکار و یا بر اساس تجربهای که از طریق شبکههای عصبی یا درختهای تصمیم گیری به دست میآورند، انجام می دهند. داده کاوی علاوه بر گردآوری و مدیریت داده های انبوه، تجزیه، تحلیل اطلاعات و پیش بینی را نیز انجام میدهد که پارامتر های گوناگونی را در نظر می گیرد:
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
WEKA را می توان یکی از قدرتمند ترین ابزار های موجود جهت داده کاوی دانست که یک کتابخانه متن باز می باشد که به کاربر این امکان را می دهد تا با استفاده از امکانات زبان جاوا، داده های خود را پردازش کند. WEKA توابع مختلف را برای داده کاوی در اختیار کاربر قرار میدهد. مزیت استفاده از این کتابخانه این می باشد که ابزار های متنوعی جهت پیاده سازی الگوریتم های داده کاوی را به صورت آماده دارد.
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
ﻘﺪﻣﻪ
ایتدا قبل از این که بخواهیم در مورد این نرم افزار توضیح دهیم ، به حوزه ی مورد استفاده ی آن اشاره ای می کنیم و در مورد داده کاوی در این نرم افزار توضیح می دهیم.
داده کاوی یا دیتاماینینگ ، در هسته ی خود ، به معنی تبدیل مقدار زیادی از داده به قسمت های معنی دار و با قواعد را می گویند. به عبارت دیگر ، می تواند به دو قسمت تقسیم بندی شود:
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
به شکل مستقیم و به شکل غیر مستقیم . در داده کاوی به شکل مستقیم شما قصد دارید که یک مقدار داده های یک نقطه ی مشخصی را پیش بینی کنید .
مانند پیش بینی رشد قیمت خانه و پیش بینی برای خرید در زمانی مشخص
در شکل غیر مستقیم ، شما تعدادی گروه داده ایجاد می کنید یا تعدادی الگو در داده های موجود پیدا کنید .
داده کاوی صرفا در حوزه شرکت های بزرگ و نرم افزار های گران قیمت نیست . در واقع یک نوع نرم افزار وجود دارد که بتواند تقریبا همه ی همان چیزهایی که نرم افزار های گران انجام می دهند ، انجام دهد . آن نرم افزار همان وکا است. وکا محصول و ساخته شده ی دانشگاه وایکاتو در نیوزلند است و در ابتدا در سال ۱۹۹۷ طراحی و توسعه داده شد.
وکا از الگوریتم های زیادی برخوردار است که می توان به شکل زیربه آنها اشاره کرد :
طبقه بندی : درخت تصمیم ، نزدیک ترین نقطه ها ،الگوریتم کوتاه ترین مسیر ، بیز ساده
پیش بینی کردن : رگرسیون خطی و غیر خطی ، الگوریتم ادراکی
روش های متا : الگوریتم کیسه ، الگوریتم افزایش
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
این روش ها در قسمت های یادگیری ماشین با نظارت و بدون نطارت و همچنین تقویتی و خود تکمیلی تقسیم می شوند.
الگوریتم های زیادی در این نرم افزار وجود دارند که به اختصار به تعدادی از انها اشاره کردیم .
البته در مورد الگوریتم های ناشناخته تر دیگر نیز وکا یک باکسی فراهم کرده تا اطلاعات اولیه ای برای اشنایی با آن به شما بدهد اینگونه بتوانید حداقل اطلاعات راجع به آن الگوریتم را داشته باشید .
ﻭﮐﺎ ﺷﺎﻣﻞ ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﺍﺯ ﺍﺑﺰﺍﺭ ﻫﺎﯼ ﺩﻳﺪﺍﺭﯼ ﺳﺎﺯﯼ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﻳﯽ ﺑﺮﺍﯼ ﺁﻧﺎﻟﻴﺰ ﻭ ﺑﺮﺭﺳﯽ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﭘﻴﺶ ﺑﻴﻨﯽ ﺁﻧﻬﺎ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﺭﺍﺑﻂ ﮐﺎﺭﺑﺮﯼ ﮔﺮﺍﻓﻴﮑﯽ ﺁﻥ ﮐﺎﺭ ﺑﺮﺍﯼ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﺍﻳﻦ ﺗﻮﺍﺑﻊ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺭﺍ ﺁﺳﺎﻥ ﺗﺮ ﮐﺮﺩﻩ ﺍﺳﺖ. ﺩﺭ ﻣﺪﻝ ﻫﺎﯼ ﻗﺒﻠﯽ ﻭﮐﺎ ﺑﻪ ﺯﺑﺎﻥ ﻫﺎﯼ ﺩﻳﮕﺮ ﭘﻴﺎﺩﻩ ﺳﺎﺯﯼ ﺷﺪﻩ ﺑﻮﺩ ﻭ ﺍﺯ ﺍﻳﻦ ﺭﺍﺑﻂ ﮐﺎﺭﺑﺮﯼ ﺑﺮﺧﻮﺭﺩﺍﺭ ﻧﺒﻮﺩ. ﺁﺧﺮﻳﻦ ﻭﺭﮊﻥ ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻭﺭﮊﻥ ۳ ﺁﻥ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﺷﺎﻣﻞ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻳﺎﺩﮔﻴﺮﯼ ﻣﺎﺷﻴﻦ ﺯﻳﺎﺩﯼ ﻣﯽ ﺑﺎﺷﺪ .
ﺑﺮﺍﯼ ﻓﺎﻳﺪﻩ ﻫﺎﯼ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻣﯽ ﺗﻮﺍﻥ ﺭﺍﻳﮕﺎﻥ ﺑﻮﺩﻥ ﺁﻥ ﺭﺍ ﻧﺎﻡ ﺑﺮﺩ ﻭ ﺍﻳﻦ ﮐﻪ ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﭘﻠﺘﻔﺮﻡ ﺧﺎﺻﯽ ﻧﻴﺴﺖ ﻭ ﺑﺮ ﺭﻭﯼ ﺗﻤﺎﻡ ﭘﻠﺘﻔﺮﻡ ﻫﺎﯼ ﻣﺤﺎﺳﺒﺎﺗﯽ ﮐﻪ ﺟﺎﻭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ ﻗﺎﺑﻞ ﻧﺼﺐ ﻣﯽ ﺑﺎﺷﺪ.
ﻭﮐﺎ ﺍﺯ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﻫﺎﯼ ﺯﻳﺎﺩﯼ ﺑﺮﺍﯼ ﺩﺍﺩﻩ ﮐﺎﻭﯼ ﺑﻪ ﺧﺼﻮﺹ پردازش کزدن ، کلاستر بندی ، طبقه بندی و رگرسیون برخوردار می باشد. ﺑﺮﺧﻮﺭﺩﺍﺭﯼ ﺍﺯ ﺍﻳﻦ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﺎﻳﻞ ﻫﺎﯼ ﺩﺍﺩﻩ ﻫﺎ ﺍﻣﮑﺎﻥ ﭘﺬﻳﺮ ﻣﯽ ﺑﺎﺷﺪ . ﻭﮐﺎ ﺍﻣﮑﺎﻥ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻫﺎﯼ ﭘﻴﺎﺩﻩ ﺷﺪﻩ ﺑﺎ ﺯﻳﺎﻥ ﺍﺳﮑﻴﻮﻝ ﺭﺍ ﻧﻴﺰ ﻓﺮﺍﻫﻢ ﻣﯽ ﮐﻨﺪ ﻭ ﻣﯽ ﺗﻮﺍﻧﺪ ﻧﺘﺎﻳﺞ ﻣﻮﺭﺩ ﻧﻈﺮ ﺭﺍ ﺩﺭ ﻗﺎﻟﺐ ﻳﮏ ﭘﺮﺱ ﻭ ﺟﻮ ﺑﺎ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻓﺮﺍﻫﻢ ﮐﻨﺪ.
رابط کاربری اصلی وکا ، اکسئلورر می باشد اما از قسمت های دیگر نیز امکان دسترسی به توابع موجود می باشد. قسمت های دیگر نرم افزار شامل یک آزمایشگر ، ﻳﮏ ﮔﺮﺍﻑ ﮐﻨﺘﺮﻝ ﺟﺮﻳﺎﻥ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﻳﮏ ﺧﻂ ﻓﺮﻣﺎﻥ ﺳﺎﺩﻩ ﻣﯽ ﺑﺎﺷﺪ .
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
ﻗﺴﻤﺖ ﺍﮐﺴﭙﻠﻮﺭﺭ ﺩﺭ ﻭﮐﺎ ﭼﻨﺪ ﭘﻨﻞ ﺑﺮﺍﯼ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﻭ ﻭﻳﮋﮔﯽ ﻫﺎ ﻓﺮﺍﻫﻢ ﮐﺮﺩﻩ ﺍﺳﺖ .
۱ – ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ : ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﻣﮑﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺩﺍﺩﻩ ﻫﺎ ﺑﻪ ﺷﮑﻞ ﻓﺎﻳﻞ ﻭﺭﻭﺩﯼ ARFF ،csv ﻳﺎ ﺍﺭﺗﺒﺎﻁ ﺑﺎ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺍﺳﺖ .
۲ – ﻃﺒﻘﻪ ﺑﻨﺪﯼ : ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﻣﮑﺎﻥ ﺍﺿﺎﻓﻪ ﮐﺮﺩﻥ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻃﺒﻘﻪ ﺑﻨﺪﯼ ﻳﺎ ﺭﮔﺮﺳﻴﻮﻥ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺗﺎ ﮐﺎﺭﺑﺮ ﺑﻪ ﺳﺎﺩﮔﯽ ﺑﺘﻮﺍﻧﺪ ﺍﺯ ﺗﻌﺪﺍﺩ ﺯﻳﺎﺩﯼ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻣﺮﺑﻮﻃﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ROC ، ﺩﺭﺧﺖ ﺗﺼﻤﻴﻢ ﻭ … ﺍﺳﺘﻔﺎﺩﻩ ﮐﻨﺪ.
۳ – ﻭﺍﺑﺴﺘﮕﯽ : ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﻳﮏ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﺑﺨﺶ ﻗﻮﺍﻧﻴﻦ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺗﺎ ﺍﺭﺗﺒﺎﻁ ﻣﻴﺎﻥ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﻗﻮﺍﻧﻴﻦ ﺩﻳﺪﻩ ﺷﻮﺩ.
۴ – ﮐﻼﺳﺘﺮ : ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﻣﮑﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﮑﻨﻴﮏ ﻫﺎﯼ ﮐﻼﺳﺘﺮﻳﻨﮓ ﺭﺍ ﺑﺮﺍﯼ ﻣﺎ ﻓﺮﺍﻫﻢ ﻣﯽ ﮐﻨﺪ ﮐﻪ ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﻣﯽ ﺗﻮﺍﻥ ﺑﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ k-means ﺍﺷﺎﺭﻩ ﮐﺮﺩ. ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﭘﻴﺎﺩﻩ ﺳﺎﺯﯼ ﻫﺎﯼ ﺩﻳﮕﺮﯼ ﺑﺮﺍﯼ ﺗﻮﺯﻳﻊ ﻫﺎﯼ ﻧﺮﻣﺎﻝ ﻧﻴﺰ ﻭﺟﻮﺩ ﺩﺍﺭﺩ.
۵ – ﻧﻤﺎﺩﻳﻨﻪ ﺳﺎﺯﯼ : ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﻣﯽ ﺗﻮﺍﻥ ﻧﺘﻴﺠﻪ ﯼ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﺮ ﺭﻭﯼ ﺩﺍﺩﻩ ﻫﺎ ﺭﺍ ﺑﻪ ﺷﮑﻞ ﭘﻼﺕ ﻭ ﻧﻤﻮﺩﺍﺭ ﻣﺸﺎﻫﺪ ﮐﺮﺩ.
ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻭﮐﺎ
ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﺑﺘﺪﺍ ﺑﻪ ﺗﻮﺿﻴﺢ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺭﮔﺮﺳﻴﻮﻥ ﻭ ﮐﺎﺭﺑﺮﺩ ﺁﻥ ﺩﺭ ﻭﮐﺎ ﻣﯽ ﭘﺮﺩﺍﺯﻳﻢ :
ﺭﮔﺮﺳﻴﻮﻥ ﻳﮑﯽ ﺍﺯ ﺳﺎﺩﻩ ﺗﺮﻳﻦ ﺭﻭﺵ ﻫﺎ ﺑﺮﺍﯼ ﺍﺳﺘﻔﺎﺩﻩ ﺩﺭ ﻭﮐﺎ ﺍﺳﺖ ﺍﻣﺎ ﺑﻪ ﺗﻨﺎﺳﺐ ﺍﺯ ﻗﺪﺭﺕ ﮐﻤﺘﺮﯼ ﻧﻴﺰ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ . ﺍﻳﻦ ﻣﺪﻝ ﺑﻪ ﺳﺎﺩﮔﯽ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻣﯽ ﺗﻮﺍﻧﺪ ﻳﮏ ﻭﺭﻭﺩﯼ ﺑﮕﻴﺮﺩ ﻭ ﻳﮏ ﺧﺮﻭﺟﯽ ﺑﺪﻫﺪ . ﺍﻟﺒﺘﻪ ﻣﻘﺎﺩﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺗﺮﯼ ﺍﺯ ﺍﻳﻦ ﻧﻴﺰ ﻣﯽ ﺗﻮﺍﻧﺪ ﺩﺭﻳﺎﻓﺖ ﮐﻨﺪ ﻭ ﺧﺮﻭﺟﯽ ﻫﺎﯼ ﻣﺘﻨﺎﺳﺒﯽ ﺑﺎ ﺁﻥ ﻧﻴﺰ ﺑﺪﻫﺪ.
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
09367292276
09367292276
azsoftir@gmail.com
azsoftir.com
ﺑﻪ ﺑﻴﺎﻧﯽ ﺩﻳﮕﺮ ﻣﯽ ﺗﻮﺍﻥ ﮔﻔﺖ ﮐﻪ ﺭﮔﺮﺳﻴﻮﻥ ﺣﻮﻝ ﺩﺍﺩﻩ ﻫﺎﻳﯽ ﺑﺎ ﻳﮏ ﻧﻮﻉ ﺍﻋﻤﺎﻝ ﻣﯽ ﺷﻮﻧﺪ. ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﻳﮏ ﺳﺮﯼ ﻣﺘﻐﻴﺮ ﻫﺎﯼ ﻣﺴﺘﻘﻞ ﻭﺟﻮﺩ ﺩﺍﺭﻧﺪ ﮐﻪ ﻫﻨﮕﺎﻣﯽ ﮐﻪ ﺑﺎ ﻫﻢ ﻣﺘﺼﻞ ﻣﯽ ﺷﻮﻧﺪ ﻳﮏ ﻧﺘﻴﺠﻪ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﻫﻢ ﺭﺍ ﻣﯽ ﺳﺎﺯﻧﺪ.
ﻫﻤﭽﻨﻴﻦ ﺍﺯ ﺭﮔﺮﺳﻴﻮﻥ ﺑﺮﺍﯼ ﭘﻴﺶ ﺑﻴﻨﯽ ﮐﺮﺩﻥ ﻧﺘﻴﺠﻪ ﺍﺯ ﻳﮏ ﺳﺮﯼ ﻣﺘﻐﻴﺮ ﻫﺎﯼ ﻣﺴﺘﻘﻞ ﻧﺎﺷﻨﺎﺧﺘﻪ ﻧﻴﺰ ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽ ﺷﻮﺩ. ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﻣﯽ ﺗﻮﺍﻥ ﺑﻪ ﺭﻭﺵ ﭘﻴﺶ ﺑﻴﻨﯽ ﻗﻴﻤﺖ ﺧﺎﻧﻪ ﺑﺎ ﺭﮔﺮﺳﻴﻮﻥ ﺍﺷﺎﺭﻩ ﮐﺮﺩ.